В этой статье мы поговорим о дефектах встречающихся в сварных швах выполненных преимущественно ручной дуговой сваркой.
Знание о видах дефектах и способах их устранения вовсе сведёт их появление к необходимому минимуму.
Неравномерность формы сварного шва возникает в результате не постоянного режима сварки, неправильное расположение электрода относительно разделки кромок, неправильная подготовка разделки под сварку. А также из-за низкой квалификации сварщика.
Наплывы — это когда металл шва натекает на основной металл и не сплавляется с ним. Чаще всего возникают при сварке в горизонтальном положении так как жидкий металл натекает на холодные кромки.
Также причинами возникновения наплывов могут быть неправильно выбранные параметры режима сварки:
- Большой сварочный ток;
- Длинная длина дуги;
- Загрязнение кромок и околошовной зоны.
Подрезы представляют собой местное уменьшение толщины основного металла в виде канавок, располагающихся вдоль границ сварного шва.
Причины возникновения:
- Большой сварочный ток;
- Длинная дуга дуги;
- Неточное ведения электрода;
- Высокая скорость сварки;
- Повышенное напряжение дуги.
Чаще всего подрезы образуются при сварки угловых швов в тавровом соединении и при сварки горизонтальных швов.
Прожоги это проплавление основного или наплавленного металла с возможным образованием сквозных отверстий.
Причины возникновения:
- Большой сварочный ток;
- Увеличенный зазор между кромками;
- Недостаточное притупление кромок;
Наиболее часто прожоги появляются при сварке тонкого металла или первого прохода многослойного шва.
Кратеры — углубления, остающиеся в местах обрыва дуги. В таких углублениях образуются усадочные рыхлоты, которые в свою очередь являются концентраторами напряжений, в следствии чего в этих местах могут развиться трещины.
При ручных способах сварки кратеры следует заваривать. А при автоматической сварке использовать вводные и выводные планки.
Трещины являются наиболее опасными дефектами. Под действием нагрузок, трещины могут распространяться с высокой скоростью. В результате чего происходят хрупкие разрушения изделий.
Трещины могут возникать в процессе кристаллизации металла шва при температуре 1100…1300 градусов Цельсия. (горячие трещины).
Холодные трещины возникают при температуре 100…300 градусов Цельсия в легированных сталях. А после остывание возникают в углеродистых сталях.
Непровары представляют собой участки, где отсутствует сплавление между свариваемыми деталями. Такой дефект уменьшает рабочее сечение сварного шва, что может привести к разрушению.
Причины возникновения:
- Плохая очистка разделки;
- Малый зазор;
- Большое притупление;
- Большая скорость сварки;
- Недостаточный угол скоса кромки.
Поры представляют собой полости в металле шва, заполненные газом. Газовые включения образуются если в сварочной ванне происходит перенасыщение газами. Основной причиной появления пор при сварке сталей является азот, водород и окись углерода, образующиеся в результате отклонения химического состава металла шва от заданного из-за снижения в нем кремния и марганца. Другими причинами могут служить:
- плохая очистка свариваемых кромок от ржавчины, масел и различных загрязнений,
- повышенное содержание углерода в основном и присадочном металла,
- большая скорость сварки,
- большая влажность обмазки электродов,
- сварка при плохой погоде.
Шлаковые включения — это полости в металле сварного шва, заполненные шлаками, неуспевающими всплыть на поверхность шва.
Шлаковые включения образуются из-за неполного удаления шлака при многослойной сварке, некачественных электродов (кусочки покрытия попадают в сварочную ванну), из-за плохой очистки свариваемых кромок от ржавчины, окалины и других загрязнений. Недостаточный сварочный ток и чрезмерно большая скорость сварки также могут вызвать появление шлаковых включений.
Поры, наблюдаемые в сварных швах, связаны с процессами выделения газов в макро- и микрообъемах.
При объемном пересыщении металла сварочной ванны газами, вызванном уменьшением растворимости из-за снижения температуры металла, в основном образуются макропоры. Рост пузырьков газа в этом случае происходит в основном в результате конвективной диффузии газа из окружающих объемов металла. Скорость роста пузырьков определяется степенью пересыщения ванны газами и скоростью десорбции газов в зародыш.
При локальном пересыщении жидкого металла у фронта кристаллизации зарождение и развитие пузырьков наиболее вероятно на стадии остановки роста кристаллов. Пузырьки в этом случае в основном развиваются вследствие диффузии атомов (ионов) газа из прилегающих микрообъемов металла. Размеры пузырьков определяются в основном длительностью остановок в росте кристаллов. При кристаллизации первых слоев и длительности остановок 0,1…0,2 с, характерных для наиболее употребляемых режимов сварки, вероятно образование мельчайших пор у линии сплавления. Роль азота в образовании крупных пор при отсутствии конвективной массопередачи газа невелика.
Получение плотных швов при сварке покрытыми электродами и порошковыми проволоками может быть достигнуто путем снижения содержания газов в сварочной ванне ниже предела растворимости в твердом металле при температуре плавления. В этом случае образование пузырьков газа в момент кристаллизации не происходит. Этот способ обеспечения плотных швов реализуется в электродах с покрытием основного вида.
При увлажнении электродного покрытия основного вида содержание водорода в сварочной ванне возрастает выше его предела растворимости в твердом железе при температуре плавления и попадает в наиболее опасную с точки зрения образования пор концентрационную зону скачка растворимости (12… 27 см3/100 г). При таких концентрациях водорода процесс образования и удаления пузырьков газа из сварочной ванны протекает вяло, что приводит к образованию пор.
Поры, обнаруживаемые в швах при сварке длинной дугой электродами с карбонатно-флюоритным покрытием, вызваны выделением азота. Плохое смачивание капель электродного металла и ванны шлаками электродов этого вида создает условия для непосредственного контакта металла с газовой фазой и повышенной абсорбции азота.
Газом, вызывающим пористость швов при сварке электродами с рутиловым и руднокислым покрытиями, в основном является водород. Выделение оксида углерода и азота играет второстепенную роль.
Получение плотных швов при сварке этими электродами достигается путем создания благоприятных условий для повышенной абсорбции водорода на стадии капли и интенсивного роста и быстрого удаления образовавшихся пузырьков газа из сварочной ванны до момента ее кристаллизации. Такая ситуация реализуется при обеспечении содержания водорода в сварочной ванне, значительно превышающем предел его растворимости в жидком железе при температуре плавления, т. е. намного больше 27 см3/100 г.
Введение в рутиловые и руднокислые покрытия материалов, содержащих кристаллизационную влагу, способствует интенсивной абсорбции водорода каплями электродного металла и высокотемпературной областью сварочной ванны, что создает впоследствии благоприятные условия для зарождения, роста и удаления пузырьков газа до момента кристаллизации сварочной ванны.
Увеличение силы тока при сварке электродами с рутиловым и руднокислым покрытиями повышает вероятность образования пор в металле шва, что обусловлено перегревом второй половины электрода, уменьшением содержания влаги в перегретом покрытии и содержания водорода в металле шва, выполненном перегретой частью электрода до опасного концентрационного уровня (12…27 см3/100 г).
При введении значительных количеств алюминия, титана, кремния в покрытия рутиловых и руднокислых электродов возрастает вероятность образования пор, обусловленная ростом концентрации кремния в металле сварочной ванны.
Будучи поверхностно-активным элементом, кремний тормозит десорбцию водорода, дегазация ванны идет вяло, в металле образуются поры. Подобное влияние может оказывать сера и другие поверхностно-активные элементы.
Раскисление покрытий рутиловых или руднокислых электродов кремнием, титаном, алюминием, углеродом, высокое содержание этих элементов в основном металле, повышение температуры прокалки, снижение окислительного потенциала покрытия и др. приводят к снижению скорости выделения газов и к образованию пористости.
Подавление кремневосстановительного процесса путем повышения основности шлака, введения карбонатов в покрытие и окисления кремния водяным паром способствует увеличению скорости выделения водорода. Предложенный метод интенсификации выделения водорода использован при создании промышленных марок рутил-карбонатных электродов серии АНО.
Менее падежная защита металла от воздуха при сварке порошковыми проволоками открытой дугой приводит к большей (по сравнению с электродами) абсорбции азота металлом, поэтому выделение азота из ванны оказывает существенное, а в ряде случаев решающее, влияние на пористость. В проволоках карбонатло-флюоритного типа предупреждение выделения азота в виде газовой фазы достигается легированием металла титаном и алюминием. Эффективно снизить абсорбцию азота можно, зашитив зону сварки углекислым газом, смесями газов на основе аргона либо используя проволоку двухслойной конструкции.